此页面通过工具从 csdn 导出,格式可能有问题。
题目
The following cryptarithm is a multiplication problem that can be solved by substituting digits from a specified set of N digits into the positions marked with *. If the set of prime digits {2,3,5,7} is selected, the cryptarithm is called a PRIME CRYPTARITHM. * * * x * * ------- * * * <-- partial product 1 * * * <-- partial product 2 ------- * * * *Digits can appear only in places marked by `*'. Of course, leading zeroes are not allowed. Note that the 'partial products' are as taught in USA schools. The first partial product is the product of the final digit of the second number and the top number. The second partial product is the product of the first digit of the second number and the top number. Write a program that will find all solutions to the cryptarithm above for any subset of digits from the set {1,2,3,4,5,6,7,8,9}. PROGRAM NAME: crypt1INPUT FORMAT
SAMPLE INPUT (file crypt1.in)5 2 3 4 6 8 OUTPUT FORMATA single line with the total number of unique solutions. Here is the single solution for the sample input: 2 2 2 x 2 2 ------ 4 4 4 4 4 4 --------- 4 8 8 4 SAMPLE OUTPUT (file crypt1.out)1 |
思路
代码
/*
ID:zhrln1
PROG:crypt1
LANG:C++
*/
#include <cstdio>
int n,b[11],k,ans;
int hash(int v){
while (v){
if (!b[v%10]) return 0;
v/=10;
}
return 1;
}
int main(){
freopen("crypt1.in","r",stdin);
freopen("crypt1.out","w",stdout);
scanf("%d",&n);
for (int i(1);i<=n;i++){
scanf("%d",&k);
b[k]=1;
}
for (int i(111);i<1000;i++){
if (hash(i)){
for (int j(11);j<100;j++){
if (i*j<10000 && i*(j/10)<1000 && i*(j%10)<1000 && hash(j) && hash(i*(j%10)) && hash(i*(j/10)) && hash(i*j)) {
ans++;
// printf("%d * %d = %d0 + %d = %d \n",i,j,i*(j/10),i*(j%10),i*j);
}
}
}
}
printf("%d\n",ans);
return 0;
}